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BY
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ABSTRACT

Consider the equation (i) (d«/dt) — A(u(t) = f(t) where for t€la, b], A(t)
is a densely defined and closed linear operator in a Banach space X. Assume
the existence of bounded projections E{t), i = 1,2, such that A(f)E(t) and
— A(t)Ex(t) are infinitesimal generators of analytic semigroups and A(¢) is
completely reduced by the direct sum decomposition X = Zil @ E(nx.
We show that any solution u(¢) of (i) is in C®(a, b) and satisfies the ineﬁuali-
ties (1.2} provided that f(t) and A(¢) are infinitely differentiable in {g, 5] in a
suitable sense. In case A(7) and f(¢) are in a Gevrey class determined by the
constants {M ,,} we have (1.3). Applications are given to the study of solution
of (i) where for t€ [a, b] A(¢) is the unbounded operator in H 0.p (G) associated
with an elliptic boundary value problem that satisfies Agmon’s conditions
on the rays 4 = tir, 7 > 0.

1. Introduction

The purpose of this work is to investigate differentiability properties of solutions
of the equation

(1.1 G au) = 1)
where for each te[a,b], A(?) is an unbounded operator in H%?(G) associated
with an elliptic boundary value problem. It is assumed that for all sufficiently
large real t and for A = + it we have 1€ p(A(t)), the resolvent set of A(f), and
|G- a0yt | s c/|a].

Earlier results on the differentiability of solutions of the equation (1.1) in a
Banach space were obtained by Agmon-Nirenberg [2] for A(t) independent of ¢.
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For p = 2 differentiability properties of solutions of (1.1) follow from the results
of [5] and [10]. The proofs in [5] and [10] depend on Hilbert space methods.
Differentiability results and Gevrey classes of solutions of initial value problems
associated with (1.1) are investigated in [9] assuming that for t € [a, b], A(f) is the
infinitesimal generator of an analytic semi-group. Existence and uniqueness
results for weak and strict solutions of a class of two-point problems associated
with the equation (1.1) are derived in [4].

In Section 3 we consider the equation (1.1) where for each te[a,b], A(f) is a
densely defined and closed linear operator in a Banach space X. We assume that
there exist bounded projections E,(f) and E,(t) in X such that A(t)E,(f) and
— A(t)E,(t) are infinitesimal generators of analytic semigroups and that A(Y) is
completely reduced by the direct sum decomposition X = E()X @ E,(t)X. Let
u(t) be a solution of (1.1) in [a,b]. We prove that u(t) e C*(a, b) and that for
every positive integer n there exists a constant C, such that for n = 1,2,--- and
te(a,b) we have

] = C,,(]

Ey(a)u(a) | (t — &) + | Ex(D)u(d) [ (b —

1.2)
+ (max | 0| + max | u P~ ay"*" + 6 -7 ))
ey telab)

provided that A(?) is infinitely differentiable in [a, b] in a suitable sense and that
f(®eC™[a,b]. In the special case when A(f) and f(f) belong to the Gevrey class
{M,} in an appropriate sense we prove the existence of constants C and H such
that for te(a,b) and n = 1,2, ..+ we have

d"u
a3

iIA

CH"M,,((t — a)~"| Ey(@)u(@) | + (b — 0" Ex(b)u(b) |

(1.3)

+ (t—a)™" b — p~"*(max |u(®)| + max |f() ||)).
te[a,b] te[a,b]

Applications of the results of Section 3 to the above-mentioned parabolic,
boundary value problems are given in Section 4.

2. Notation and definitions

Given two Banach spaces X and Y, we denote by B(X, Y) the space of bounded
linear operators from X to Y. The domain of a closed and densely defined linear
operator 4 in X is denoted by D(4). p(A) is the resolvent set of 4, and a(4) is the
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spectrum of A. The norm of an element u € X is denoted by || u |, and, when X is
fixed, by |u]. For k=0,1,--- C*([a,b], X) is the space of k times continuously
differentiable functions from the interval [a, b] to X. For u(f) € C([a, b], X) and

i
=0k w0} = mes o]

C([a,b],X) = C°([a,b], X) and C*([a,b],X) = N>-oC*[a,b], X). When X is
fixed we set C*[a,b] = C*[a,b],X) and C®[a,b] = C*([a, b], X). Denote by
{M,} a sequence of positive constants that satisfy the following requirements:

2.1n M, SdyM, forallnz=0

.

2.2) (n)M,,_ij <d,M, for all n and j such that 0 < j S n.

2.3) M, M,  forallnz=0.
2.4 M;., < di**M;M, for all jand k 2 0.

do, dy and d, are positive constants. Let G(H,, H, [a, b], X) be the subset of ele-
ments u(t) of C*([a,b],X) that satisfy the inequalities |u(t) |,,__<___H0H"N,, for
n=0,1-...

We denote by G a bounded domain in R” with a boundary 0G of class C*.
G is the closure of G. C*(G) (C®(G)) is the set of I tuples of infinitely differentiable
complex-valued functions that are defined in G(G). As usual C§’(G) is the subset of
C®(G) consisting of those elements of C*(G) the support of which is a compact
subset of G. For 1 < p< o0 and = 0,1, .., H*?(G) is the completion of C*(G)
under the norm

z ( f | D7 (x) || Pdx )‘“’.
LIRS G
We use the standard notation
X = (Xg, 00 %,), X' = (xg,-,%,-1), Dy = i(0/0x)), D = (Dy, -+, D),

and D* = D}"...D?. « = (a,,-,,) is a multi-index of non-negative integers,
|a| = Zl; and for {eR’, {*={{*{ R, = {x;x’eR""} x,20}. For
®=0,1, feH"?G)and Le BH""(G), H**(G)), || f |» and | L], denote
the norms of f and L as elements of H*? (G) and B(H%?(G), H*"*(G)) respectively.
|71 = 7]o and | L = [ Lo

Let A(x, D) be an I x [ system of differential operators that is elliptic of order w
in G with coefficients that are infinitely differentiable in G. Consider boundary
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operators B(x, D), j =1, -+, 4wl, such that B/(x,D)isa 1 x I system of differential
operators of order w; < w with coefficients that are infinitely differentiable in G.
Denoted by H*?(G, {B,}) the completion of the set {u: u e C*(G), Bj(x,D)u = 0
on 4G tor j= 1,---,3wl} in H*?(G). Let AL be the unbounded linear operator in
H%?(G) such that D(4}) = H*%G,{B,}) and Aju = A(x,D)u for u e D(A}).

For 0 < o, <o, <2m, set T(og,05) = {A; A = re® r 20,0, SO<a,} and let
y(et;, o) be the boundary of I'(«;, o), that is, positively oriented with respect to
I(ay, o5).

DerFINITION 2.1. For t€[a,b], let A(t) be a closed and densely defined linear
operator in a Banach space X. Let [o, ] < [a,b]. We say that u(z) is a solution
of (1.1) in [a, B] if u(t) e Cla, f] N C*(a, B); for te(a, B) we have u(f) e D(A(1))
and du /dt ~ A(Du(t) = f(1).

3. Two point problems for ordinary differential equations in a Banach space

For te[a,b], let A(t) be a closed and densely defined linear operator in a
Banach space X. We assume in Theorem 3.3 below that A(f) satisfies the follow-
ing conditions.

Condition I. Fori = 1,2and te[a,b], E(f)isa bounded projection in X and
A(1) is completely reduced by the direct sum decomposition X = X2 ; @ E()X.

Condition II. E(f)e C*([a,b], B(X, X)) for i = 1,2.

Condition TII. There exist complex numbers y;, i = 1,2, such that for i = 1,2
the operator L(f) =(—1!"'(AMEL(H) + i) satisfies the following three con-
ditions.

(i) For te[a, b], the resolvent set of L{f) contains the closed sector I'(—4n—0,
in + 0) with 0 <0 < in.

(ii) L{)~' e C([a,b], B(X, X)).

(iii) There exist constants B,, n =0,1,-.,for AeI'(— 47— 6, iz + 0) and

te[a,b]; we have

G.1) u-g;,—(l—L(t))‘l <BJA|'.

Suppose that L(¢) satisfies (i), (ii), and (iii). The existence of an evolution
operator U(t, 1) associated with L(t) follows from the results of [6]. It is proved
in [9] that U(t,7) is infinitely differentiable for a £ v <t < b and for every pair
m, n of non-negative integers there exists a constant C,, , such that



422 T. BURAK Israel J. Math.,
(8"
(3.2) |57 (7) U, 9| s Cualt 7.

Lemma 3.1 below is a corollary of the proofs in [9].

LemmA 3.1. Let K(t,7)e B(X, X) for a £t <t £ b. Assume that for every
pair m,n of non-negative integers there exists a constant C,,, such that

(.3) “ F (_‘3_ + _"_)'"K(r, 9 H <Cpt—1|™

o \ ot ot

(i) Let f(t)e C[a,b]nC"(a,b). Then for te(a,b), re(a,t),and n = 1,2, .-, we
have

7‘1;; J;K(f, 1)f(z)dr = L’% K(t, 1) f(r)dz

n—=1 n-1-k n—1—k ) k 9 ] n—1-k—J d.l
ay i s ()G Grw) e

t n n a a n-k dk
+ J: k§0 (k) (—a't- + 7{) K(t,7r) -&T—kf(‘t)d‘l'
(i) Let f(f)e C’[a,b]). Then for te(a,b] and n = 1,2, -, we have

dn t
4 ), Ka.9f@ds

[

-1 p-

69 =% (TN (G R ko e

+ f ‘ éo ( Z) (% ; %)"'kx(t,r) ‘—,d;f(r)dr-

LEMMA 3.2. Suppose that W(t,7)eB(X,X) for aSt<t<b, and that
Wi(t,7) € B(X, X) for a < t <t £ b. Assume that for i = 1,2, Wt,7) is infinitely
differentiable for t # t and that for every pair m,n of non-negative integers
there exists a constant C,, such that estimate (3.2) holds for U(t,7) = W(t,1).

Let [«, f]=[a, b]. Let n be a positive integer. Assume that C, o(f—a) <1 and. that
2" 1Coo(B —a) <1 for k = 1,--,n. Let g{t) e Cla, f] N C*(a, B) for i = 1,2---.
Suppose that v(t) e C[a, ] for i = 1,2 and satisfies the relations

]

0, () = g:(N+ J' Wy(t, T)ox(t)dr and vy(1) = g,() +J‘,W2(t, Doy (7)dz.
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(i) v()eC*a,P) for i = 1,2, and there exists a constant K, such that the
estimate

(.9) L2 o] < K, 6 =07+ + 8 = 97"

holds for i = 1,2 and t €(a, B) provided thatfori = 1,2, te(a, f),andj = 1,--,n
we have

(3.7 || I0) ” <G and
d’
(38) |57 00] = 6 — 7+ + B = i3+,

(ii) v{)e C™(a, B) for i = 1,2, and there exists a constant K, such that the
estimates

(3.9) ]lg:; o] £ K,G(@ — =" + (B~ 9"+ and

(3.10) “%;vz(t)u < K,G((t — a)~"+! + (B — £)~"*Y)

hold for te(e, f) provided that g,(t) =0 in [a, 8], that g,(t) = h(f) and for
j=0,-,n and te(a ) we have

j
(3.11) “B%T h(t)“ < G(t — ).

Proor. Let Q,, Q, be the bounded operators from C[a, f] to C[a, f] that are
defined by

(3.12) 0,9(0) = f W,(t, Dg(c)dx and

B
(3.13) 029(1) = f Wit, Dg(e)de

respectively. Let R; = Q,0, and set R, = Q,0,.

Let f(f) e C[a, f] N C*(a, B) and suppose that for j = 1,---,n and te(a, f) we
have

(3.19) " HO) n £ F, and

a
(3.15) |5 | s P -0+t 4 @-n7Ie.
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Forj = 0,.-,nlet F; = max; ., .. ;F;. For 1 Sk < n there exists a constant C,
such that for i = 1,2

k
(16) [ 550000] S (Gt s+ 271 CoolB ~DE (¢ = 074+ 14 (B—) 4+

provided that f(¢) satisfies (3.14) and (3.15). To verify the last assertion for i = 1,
observe that (d* /df*)Q,f(1) is given by the right-hand side of (3.4) with n = k,
K(t,7) = W, (t,7),and r = 4 (o0 + 1). Estimate (3.16) for i = 2 is obtained similarly.
Consequently for k = 1,--,n there exists a constant C, such that

d* , -
G17) [ ZzRIO | S CFiest @7CoolB — FF =)+ + (=)
for i = 1,2 and for te(a, f). Hence for k = 1,--,n and j = 0,1 --- there exists a
constant F, ; such that
& | < —k+1 k41
|5 RI O] < P = a7+ g - nten),

Set Go‘j = IR'{f(t) lo and

Gyy= sup ((t — )™+ 4 (B — ) ™*+1)!

te (a.8)

Suppose that Coo(f —a)<p <1 and that for k=1,---,n, 2*71Cq,o(f — )
< p < 1. Then X7.,G, ; converges and

4ris .

[ ]
(3.18) Z Go ;= (1~ p*)'Go,.
J=0

It also follows from (3.17) that for k = 1, ---,n, X2, G,,; converges and that

«© @
(3.19) £ Gy =0 (G Giosyt Guo)

j=o j=0
Here
G;‘—l,] = max Gf,j'
0sisk—1

This implies that

% RLf()e Cla, B] A C(a, B)
j=0

and that there exists a constant K, such that for i = 1 and t e (e, f) we have

" &z RSO S KoFillt — )1+ (B = ="+

(3.20) )
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The same result holds also for i = 2. To complete the proof of (i) it is now suf-
ficient to observe that since C, (8 — a) < 1, v,(t) and v,(1) are given by

(3.21) () = T Rigy()+ 0, T Rigy()and
j=0

J=0

(3.22) 0,(1)

0, L Rig)+ X Rig (0.
j=0 j=0

To prove (ii) one verifies, with the help of Lemma 3.1 (i) and (ii), the existence
of constants k;, i = 1,--,n and C;, j = 1,+--,n such that

(3.23) “_j? th(z)!} < K,Gln(t - %)

and in case n> 1,

P

(3.24) v

0:H(0] S KG((t =2+ 1+ (B = 7+)

fori=2,--,nandforj=1,--,n

]
(325 |2 Rabio] 5 €60~ ~+ 14 (8= 1+)

Let u,(t), u,(t) be the solution of the system of equations
(3.26) uy(1) = g,(f) + Q,u,(?) and
(3.27) uy(1) = g,(f) + Q,u, (1)

with g,() = R,h(t) and g,(t)=0. Then o0,(t) = u, () + h(t), v, () = uy(f)
+ Q,h(r), and the assertion of (ii) follows from (i) and from estimates (3.23) and
(3.24).

Assume that A(f) satisfies conditions I, 1I, and III and for i = 1,2, set B(t)
=X, E{OE(t) — ] and let L{t) = (— 1Y+ (AMDE() + pD). As in [4] let
K,(t,7), for a £ 1 £ t £ b, be the evolution operator associated with L,(t) + B,(?).
Let H(t,7), for a< 7 £t £ b, be the evolution operator associated with
Lia+b—-t)—By(a+b—t),and fora<t <1< b,setKy(t,7) = Ha+b—1t,
a+ b—1). Define W (t,7) for a<t5t<h, Wy(t,7) for a<t<t=<b, and
Wy(t,7) for aSt<1t<b by

(3.28) W(t,7) = K(t, DE()E(2).

1t follows from [4, Lem. 3.3] that if u(f) is a solution of (1.1)in [«, 8] < [a, b] and,
for i = 1,2, u(t) = E(t)u(t), then for te[«, f]
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(329 u,(t) = K,(t,0)u, + f 'Kl(t, DE (D) f(x)dr + f ‘Wl(t, Tu,(7)d

B 8
(3.30)  u(t) = Kylt, By + f Kyt OE,()f ()dx + f Wi, ().

THEOREM 3.3. Suppose that A(t) satisfies Conditions I, II, and I11. Then
every solution of (1.1)in[a,b] is in C*(a,b) provided that f(f)e C*[a,b]. For
n=1,2,-- there exists a constant C, such that if u(t) is a solution of (1.1) in [a, b]
and f(t)e C*[a,b] then

630 |25 w0 5 G E@u@ | (=2 + | EBu®) |6 -

+

(SO, + [t — )"+ + (b ~ )="+1)
for te(a,b).
ProOF. The assumptions of the present theorem and the relation
A—-L®O+BO)™ = - @ - L)~ 'B@)"*(A - L(®)~*
that holds for A eI'(— 4n — 0, ix + 0) with
|2| = 2B, max | B(9)|

tefa,b)
imply that there exists a complex u such that L(f) = L,(¢) + B(t) + ul satisfies
(i), (i1), and (iii) of Condition III. Let U(t, 7) be the evolution operator associated
with L(t). Then K,(t,7) = e "~ PU(t, 7). The above-mentioned results of [9]and
the assumptions of the present theorem guarantee that for every pair m, n of non-
negative integers and for i = 1 there exist constants B,, , and C,, , such that

(3.32) H 3: (gt- + —(%—)mKi(t, ‘r)" <B,,|t—|"" and
(3.33) H gt (—% + -%)mm(t, 1:)“ < Cplt = 1|

The same result holds also for i = 2,

Let u(?) be a solution of (1.1) in [a,b]. For i = 1,2 set ut) =E/(t)u(t). Let
[, 8] < [a,b]. Let 0 < p < 1; suppose that Cy o(f — &) < pand that 2=1C, o(8, @)
<pfor k =1,-,n. Let v)(z), v}(t) be the solution of (3.34) and (3.35) with g,(®)
= [iK(t,1)E(x) f(1)dr and g,(f) = fsz(t, 1) E,(7)f(7)dz. Observe that by
Lemma 3.1 (ii) the functions g,(t) satisfy the requirements of Lemma 3.2 (i). Let
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vi(1), v3(1) be the solution of (3.26) and (3.27) with g,(f)=K,(t, ®)E,(a)u(x) and
g,(f) = 0; denote by v3(), v3(t) the solution of (3.26) and (3.27) with g,(f)=0 and
g,() = Ky(t, B)E,(B)u(B). By [4, Lem. 3.3] u(s), i = 1,2, satisfy the relations
(3.29) and (3.30) and, since Co (B ~ @) < 1, we have uft) = X2_, vj(t), i = 1,2.
Hence Lemma 3.2 (i) and (ii) guarantee that ut) e C"(a, f) and that for te(x, B)

n

& u(t] < G| Eou(@ | (1 = 7" + | ExBu(B | 8 = -+ 0.

(3.34) l

Consequently for every non-negative integer n, u(f)e C"(a,b) and there exists
a constant C, such that (3.31) is satisfied.
The following lemma is a consequence of the results of [9].

Lemma 3.4. Let K(t,7)e B(X, X) for a £t <t < b. Suppose that there exist
constants Ny and N such that for every pair m,n of non-negative integers we have

o (0 2\
3 (5? * a—f) K9 [ NN+ MMy (0 = 7.

(i) Let [o,f] = [a,b]. For te(a,p) let rt) = o+ n(t —a)/(n + 1). There
exists a constant C such that for every positive integer n and te(a, B) we have

(3.35)

12 [kt o0a]
(3.36)

t

£ ol

S CG G Y(t—a)™ "M, _, + f
ra(f)
provided that g(t) e C[a, B} O C*(a, B), that for j = 0,---,n ~ 1 we have
i j -J
=7 90| S GoGMt ~ )

and that G > max(2N,2N(b - a)).

(3.37) i

(ii) Let fe C*[a,b] and assume that there exist constants F, and F such that
for every non-negative integer n and te[a,b] we have
dll
dt"

(3.38) [

| s FoFM,.
Then for every positive integer n

(3.39) —%; Jﬂ K(t,7)f(1) d‘r“ SFoFM,(t — a)~"*1,

Here Fy = 6d,N,F, and F = max (1, F(b—a), 2N(b — a), 2N). The proof of (i)
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is part of the proof of [9, Th. 3.1]. The proof of (ii) is part of the proof of [9,
Th. 3.3].

Lemma 3.5. Let Wi(t,1)eB(X,X) fora <t <tZ bandlet Wy(t,7)e B(X,X)
for a £t <t =< b. Suppose that for i =1,2, W(t,1) is infinitely differentiable for
t #1. Assume that there exist constants Ny and N such that for every pair m,n of
non-negative integers and for i = 1,2 we have

(3.40)

" (0 a min -

Suppose that NoM3(B — o) < §.

(i) Let gt)e C[a, B1N C*(a, B) for i = 1,2. Suppose that there exist constants
G, and G such that for i = 1,2 and for every positive integer n we have

(3.41) “gi(t) “ = GoM,,

(342 L0.0] S GGM,(t — )+, and
a -

(343 | 79:0] < Gom, (8 - s,

Let u,(t), u,(t) be the solution of (3.26) and (3.27). Suppose that the constants C
and L satisfy the following conditions: Cf—a)? =24, C,(f—a) 24,
Lz G(B — ), and L= 2C( — a) where C is the constant appearing in the right-
hand side of (3.36). Then for every positive integer n and for i =1,2 we have

(3.44) [u(d)| < 2GoM, and

(3.45) |5 4] < CLGOEM( — =418 — =71,

dt"

(ii) Let g,(t)e C[o, B]N C®(a, f) and suppose that there exist constants G,
and G such that for every non-negative integer n and for t € (z, f) we have

(3.46) |520.0] < GoGM, Gt — o)

Let u (1), u,(t) be the solution of (3.26) and (3.27) with g,(t) = 0 and g (1) as above.
Suppose that the constants C, and L satisfy the following conditions C,(f—a) = 4,
L= G(B — a), and L= 4C(B — a)*> where C is the constant appearing in the
right hand side of (3.36). Then for i =1,2 and for every positive integer n we have

(3.47) lu®]| < 2GeM, and
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(3.48) !% u,(t)u < C,GoI'M.(t — 0)~"(B — 1)="+1.,

Proor. Estimate (3.44) follows from (3.41) and from the assumption that
N M3(B—a)< 4. Let n be a positive integer. In case n > 1 assume that estimate
(3.45) holds for j = 1,---,n — 1. Then

_dj— “ Cl(ﬂ - a)z j =] -
(3.49) lmO) s =52 GoM ¢ - 0B - 1)
for j = 0,---,n — 1 and it follows from Lemma 3.4 (i) that
da _ CC,Gy(B — a)?
- < " — )"+l puthet '\ Vi 2
th"ul(t)“ S G, G"M (t — o) + > X

(3.50)

t n
x "B — t)'"“(l — a)-—n+1M"_1+ NOM(Z, f “inuz(t)udt.
r(t)

Here r,() = a+n(t—a)[(n+1). Let s() =t+ (B —1)/(n+1). One verifies
similarly that

| S)] = GoG M8 — 7
(.51) 3 SOOI pros _nesp - prein,,
sa(t) a
+ NM? f‘ [ll?i?;u,(r)"dt.

For i = 1,2 and n = 1,2+ set v}(t) = (t — )" }(B—1)"~| (d" /") u (1) | and
observe that by Lemma 3.2 (i), vj(#) is bounded in [«, 8]. Since (t— a)"~'(8—1)"~!
Set—a)'" Y (B —1)! for r(t) £ 1< s,(f) we find that

CCiGy(B — o)’

(3.52) W) S GoG"M,(f ~ iy~ + “17

t
LM, + NoMgefvg(r)dr
[

and that

CC,Go(f — a)?
2

Let nf = sup v;(#). (3.52) and (3.53) guarantee that
te(af)

s
(3.53) V5(1) S GoG"M,(t—a)"" ! + L-'M,_ + NoMgeJ. vi(1)dz.
t

cc,

(B~ D2Gol'M, + 1

(3.54) 1} S Go(B— )™ (G(B — a)"M, +



430 T. BURAK Israel J. Math.,

CC,
2L

(3.55) 122 Go(B— ) NGB — )M, + (B — )’ GoL'M, + 313

Consequently fori = 1,2 and n = 1,2, .- we have

cc,

(3.56) i = 2Go(B — )" NG(F ~ )M, + —

(B — )*GoL' M,

The assumptions on C, and L and an induction on n ensure that (i) of Lemma
3.5 is true.

The proof of part (ii) is similar and uses Lemma 3.2 (ii).

Suppose that A(?) satisfies Condition I. In Theorem 3.6 below we assume that
A(¢) satisfies the following two conditions.

Condition II'. For i = 1,2, E(t)e C*([a,b], B(X, X)); there exist constants
Ho and H such that for te[a,b] and n =0,1,--, we have |(d"/dME(t)|
< H,H"M,,

Condition III'. For i = 1,2, there exists a complex g, such that for i = 1, 2,
the operator L(f) = (— 1)"*(A(1E(t) + wI) satisfies conditions (i) and (ii) and
the following condition:

(iii)" There exist constants Hy and H such that (iii) of Condition III is satisfied
with B, = HyH"M,,

It is proved in [9] that if L(t) satisfies (i) and (ii) of Condition III and (iii)’ of
Condition 111’ and U(t, 7) is the evolution operator associated with L(t), then there
exist constants N, and N such that for every pair m,n of non-negative integers
and for a1t <t=< b we have

(3.57) [[aa—t” (—gt— + —%}m U@, 1) [[ < N,N™"M,,,,

Observe that if L(?) satisfies (i), (ii), and (iii)’ and if B(t)e C*([a, b], B(X, X)) and
there exist constants Hy, and H such that for n = 0,1, ---, we have

@ 1) B | < HoH"M,

t—-rl"'.

then there exists a p such that L(t) + B(f) + ul satisfies (i), (ii), and (iii)".

THEOREM 3.6. Suppose that A(t) satisfies Conditions I, II', and III'. Let
f(t)e C®[a,b] and assume that there exist constants Fo and F such that for
n=0,1,--- and te[a, b] we have || d" [d1") f(t) | < FoF"M,. Let u(t) be a solution
of (1.1) in [a,b]. Then u(t)ye C™(a,b) and there exist constants C and G such
that for te(a,b) and n = 1,2,---, we have
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'ld—‘i:— u()] £ CEM(— 0| E@m(@] + (b - 07" Eou)|

(3.58)
+ (t—a)" b — 0" (u® o + Fo))

ProoF. Since Conditions IT’ and 111’ hold, the above-mentioned results of [9]
gurantee the existence of constants Hy, H, K,, and K such that estimate (3.32)
holds with B,, , = HoH™""M,,M,, and estimate (3.33) holds with

Cpn = KoK™ "M, M,

Theorem 3.3 ensures that u(f) e C®(a, b). For i = 1,2, let u(t) = E(t)u(t). Let
[«, B] < [a,b] and suppose that K Ma(B — a)e < 3. Let vi(f), vi(t), j = 1,2,3,
be defined as in the proof of Theorem 3.3. Observe that by Lemma 3.4 (ii) the
function g,(t) = [iK(t,D)E(7)f(r)dt and g,() = | PR o(1, D)E,(v) f(1)d7 satisfy
the requirements of Lemma 3.5 (i) with Go= CF, and some positive constant C.
For te[a, f] we have u(f) = X}, ¥2Z_ vj(t) and Lemma 3.5(i) and (ii) guarantee
the existence of constants C and L such that for n = 1,2, .-+ and ¢ € (a, f) we have

|- w] s cEM@ - 76 - 07 Bt
(3.59)
+ (t— )™ B — )" ExBuB) | + (1—0)"H(B—0)""*1Fy).
Since (3.59) holds for every [a, ] < [a,b] such that KoMj(x — B)e <4 there
exist constants C and G such that (3.58) holds for n = 1,:-. and te(a,b).

4. Two point problems for parabolic equations

We consider in this section the equation (1.1) where for each te[a,b], A(?)
= AZ(f) is the unbounded operator in H*?(G) that is associated with an elliptic
1 x 1differential system A(t, x, D) of order w independent of t and with the boundary
operators Bt,x,D) for j=1,---,3wl. Thus for each te[a,b], A(t,x,D) and
B(t,x,D) respectively satisfy the assumption on A(x,D) and on Byx,D) of
Section 1. For te[a, b], D(A}()) = H “(G{B(f)}) and for u € D(45(f)) we have
A%(Hu = A(t, x, D)u.

For the duration of this work we use the notation and definitions of [3]. It is
proved in [3] that if A(t,x,D) and Bt,x, D) for j = 1,---, 3wl satisfy Agmon’s
conditions on the rays In/2 and (I — #){2, then there exist bounded projections
E,(t) and E,(f) in H*?(G) such that AJ(1)E,(t) and — A%(1)E,(¢) are infinitesimal
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generators of analytic semigroups and Aj(f) is completely reduced by the direct
sum decomposition

H(G) = T @ EQH(0).

Observe that Agmon’s conditions for A(x, D), B/(x, D) for j =1, -, wl, and the
ray l, guarantee the existence of constants C and R such that for Ael, with
|1 Z R we have A€ p(4]) and | (A — 48)~1| < C/]A]. (See [1] and [7]) In this
section we show that with adequate regularity assumptions on the coefficients of
A(t,x,D) and B((t,x,D) for j = 1, -, Jwl, locally E,(f) and E,(t) may be chosen so
that A5(¢) satisfies the assumptions of the theorems in Section 2.

As in [3], denote by Py(4,1) the zeroth order parametrix for (A — A5(f))™!
of Seeley [7] that is well defined for A€ l, provided that A(t,x,D) and B, x, D)
satisfy Agmon’s conditions on [,. Recall that

N N
4.1 PAty= X C(L)— Z DAt
j=1 Jj=m+t

and for fe C3(G), C{4,1)f and D (2, 1)f are given in terms of local coordinates by

(4.2) CiADf(x)= (Zﬂ)_vl//,-(X)f P&, D) (0,A(L, %,8) — )~ f (£)de

and

DA 1) f(x)
4.3) . N
= 2m) " Y (x) f X0, At X', x,, &', 5, NP fAE, 5)dE ds.

For g € C3(R’) we use the notation §(&) = [zve**g(x)dx and
aex) = [ o

The scalar functions ¢ (x) and ¥ (x),j = 1,---, N, arein C*(G) and forj =1, ---,m,
the support of ¢(x) and ¥ (x) is disjoint from 0G. 0(¢, A) is infinitely differentiable
in R”x Iy where 8(¢,2) = 0 for |£|* + |4]> < 4 and 6(,4) = 1 for |£|* +|4]?
> 1. Similarly 9'(¢’, ) is infinitely differentiable in R *~!x I, where 6'(¢’, AN=0
for [&'PP+([A?<4 and 0'(¢,2) =1 for |&'|+|A]? 2 1. 6,A(t,x,8) is the
symbol of the principal part of A(t, x, D). Recall that if Agmon’s conditions are
satisfied by A(x,D) and B(x,D),j = 1,---,3wl on I, then o,A(x,{)— 4 is a
regular matrix for (¢,4) € R x I, such that [¢|? + | 1|* # 0. Also for every set of
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integers I, m, and p and for every pair of multi-indices 6’ and &’ of length v — 1
there exist constants ¢ and ¢, such that for x, > 0,5 = 0, and for (¢',))eR""1 x I,
such that |£’12 + Illz # 0 we have

O
128 0% AP A
|DDis' a3

4.4
< cexp(— ¢y (%, + ([ & + | 4| ¢' | + |a[/oyt-o- 1l -ortmt
(See [7].)
LemMA 4.1. Suppose that any of the coefficients a(t,x) of A(t,x,D) is

infinitely differentiable in [a,b] x G and that for every multi-index o there
exist constants Hy and H such that for n = 0,1--- and (t,x) €[a,b] x G we have

o
ot ox*

d(x', %, &,5,2)|

a(t,x) | S HH'M,,

(i) Let nw/2<oa; <a, <3m[2. Suppose that o, A(t,x,E) — A is regular for
(t,x)e[a,b] x G and (£,)eR”x Yoy, a;) such that [élz + fl[z #0. Let
1<jZN. Then

1
lim —— e’*’C A, 0)dA
o 27 wai,a2) J( Jax
exists for every fe H*?(G). For te[a,b] and fe H*?(G) set
0 0f = lim f e C,(4, Odif.
a2}

=0

Then there exist constants Hy and H such that
Qe G(Hy, H, [a, b], BHH**(G), H*"(G))).

(i) Let 0 <a; <a, <2n and assume that g, ,A(t,x,£) — A is regular for
(t,x)e[a,b] x G and (£,A)eR” x I, such that |[* +|A[>#0. Let 1<Sj<N.
For u¢y(ay,a,) set

Sp, b = -——1— CiA4, 0@~ A)~tda.
27 y(x1sa2)
Then for te[a,b], S/u,1) is analytic in the complement of y(x,,a,). For every
sufficiently small e > 0 there exist constants Hy and H such that for
u¢l(ey — g, a +e)NI(ay —e, a, +¢)

we have
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Siu, ) G(|u|~*Ho, H,[a, b], BHH*?(G), H*? (G))).

(iii) Suppose that o6,A(t,x,D)— 2 is regular for (t,x)e[a,b] x G and
(€,2)e R” x I such that |£|2 + ]l]z # 0. Let 1 <j < N. There exist constants H,
and H such that for )€l we have C(2,1)€ G(H,, H,[a, b], BHH*?(G), H*" (G)))
and | 2|C;(A, 1) e G(Ho, H, [a, b], BLH{(G), HY(G))).

PROOF. Let 1 < p< o0 and let 0 < R < oo. Suppose that K(x, &) vanishes for
lxl = R and that Ié]'”'|D:ng(x,é)]§1 for |a|§v—1 and Iﬁl s [8,
Lem. 1] ensures the existence of a constant C = C(p, v, R) such that for every
feCy(G) we have

@5) | @n) f S EE |, S CLF iy
To prove part a set

e(tnt) = Gx [ Mondn - i

Here 72 0 and for || > 0, L~(|£|) is the boundary of

r(“laaz)n{}*;"llél = [llllmé rzlfl};
r, i = 1,2, are chosen so that for all x and ¢ # 0 and for t € [a, b] the eigenvalues
of 0,A(t,x,&) are contained in T(a;,a;) N{A;2r|¢[<|A]Ye < 1r;| €]}
29 is infinitely differentiable in R} x(&) =0 for || <1 and x(¢) =1 for
|| 2 2. Let ay(t,x,&,7) = 0 for [¢]| 22 and for [&] <2 set

st 569 = UL~ K@) [ 0D 0, x,8) — 1

where 9 is the boundary of I'(ay,@;) N {4; |4|/® < 2r,}. Finally for & # 0 and
720 set

(0 ) = VOO [ 50 - 7N
Now

l 6 IBD;Dg(aS(ts x’ é’ T) - aS(t: X, é, 0))
e).t

— L Bpa _1 8 — -1
46 = gl D] S Dlo. A~ b

1 8 ﬁ a ] eh_'l B-¢e -1
Lep x ( )wa(x)u,,-xm I e M SRR

2mi lej=0 \E
LY

+
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Considerations of homogeneity imply that the first term on the right-hand side of
(4.6) tends to zero as 7 tends to zero uniformly with respect to (t,x)€[a,b] x G
and £ eR’". Since D*(¢) = 0 for |<xl # 0 and & such that |C| <lor |§| =2,
the same result also holds for the second term on the right-hand side of (4.6).
Consequently for i = 3 we have

lim |£|?| D:D¥at, x,&,7) — aft, %, £,0)| = 0
=0

uniformly with respect to (t,x)e[a,b] x G and £eR". The same result holds
also for i = 2. Note that for fe C3(G) and 7 > 0 we have

@n L f e¥C (4, LS (x) = 5 f e=at, x, &, 1), f(E)dE
) 2mi y(a1,22) e —i=l B 4

and for 1= 0 we have

r_,____,_l

“8) f 5,1, %, &, VB T(EME = f e "ay(t, x, £, DA, x, D), f(B)E.

Let fe C3(G), (4.7), (4.8), and [8, Lem. 1] that we have cited above guarantee
the existence of

. 1 1
m T y(am)e C/(A, v)dif
and that
2 ~
4.9) lim ZL f "CA1)dAf(x) = X f e™at, x,£,0)p,f(£)dé.
=0 i y{a1s 22) i=1

To ensure the existence of lim,_,, [¢'"C {At)dAf for every feH %2(G), it is now
sufficient to observe that by [3, Lem. 4.2], for every t € [a, b] there exists a constant
C, such that

= fmw eCi(h1) dﬂ.[ el

for 7 > 0. Note that it follows from the assumptions on {M,} and on ¢,A(t, x, &)
that for every pair of multi-indices « and f there exist constants H, and H such
that for (t,x)e[a,b] x G, ¢ #0and e L'(] 13 |) we have

(4.10) |D;D% -%(amA(t, x,& -7t

< HoH™M,([¢] +] A=) 7L

(4.10), (4.9), the definition of at,x, &,0), and the above-mentioned [8, Lem. 1]
guarantee the existence of constants Hy and H such that



436 T. BURAK Israel J. Math.,
Qt)e G(H,, H, [a, b], BHH*?(G), H**(G)).

Let by(t,x,&, 1) = a,(t,x,¢,0)(0,A(t, x,§) — )~*. Set by(t,x,&pu) = 0 for
|€] =2 and for |£| <2 set

batt 5, 6) = e V(W = 2O BED @A 3, = D= D7
Then for fe C3(G) we have

2
S D) = @n™ Z bt x, &, ) f (E)dE

and arguments similar to those used above ensure the validity of (ii); (iii) is
checked similarly.

LEMMA 4.2. Suppose that any one of the coefficients a(t,x) of A(t, x, D) or of
B((t,x,D), j = 1,--,3wl, is infinitely differentiable in [a,b] x G. Assume that for
every multi-index « there exist constants Hy and H such that forn = 0,1.-- and
(t,x)e[a,b] x G we have |(6" JotMa(t, x)l < H,H"M,. Assume that for te[a,b],
A(t,x,D) and B((t,x, D), for j=1,---,wl, satisfy Agmon’s conditions on the ray
lg. Let m + 1 < j < N. Then there exists a constant ¢, such that for every pair of
multi-indices 6’ and ¢’ and for every set of integers I, m, and p there exist constants
Hg, and H such that for te[a,b] and n = 0,1--- we have

4.1 D.‘.'D‘,'s'—a: ﬂﬁ"—d}t x',x,, &8, D
¥ gxP QA g ST TR

S HoH"M,exp(—cy(x, +5)(|&'| + [2[Vo) (| &' [ +|2]"/o)tmerlimtm=ar

Note that for A(t,x, D) and B/(t,x, D) independent of t and for n = 0, estimate
(4.11) coincides with the above-mentioned estimate (4.4). We can use the same
proof as in [7, (3.4)] with obvious modifications to derive estimate (4.11). [7,
Lem. 3, (IT)] is used to investigate the dependence of d(t, x’, x,,&’,s,4) on t.

LEMMA 4.3, Let the assumptions of Lemma 4.2 be satisfied.
(i) There exist constants Hy and H such that for Ael,
D{(4,t)e G(H,, H,[a, b], BH*?(G), H**(G))) and
[A|D;(A, tye G(H,, H, a, b], B(H *?(G), H>*(G))).

(ii) lim,o (1, €°DJ(A, 0dAS exists for every fe H*?(G) and te[a,b]. For
fe H%?(G) set P(t=lim,., [, e"Dj()., 1)dAf. There exist constants Hy, and H
such that P(f)e G(H,, H,[a, b], BH*?(G), H**(G))).
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(iii) For uél,, set
1 -1
W) =5 | D0 D71a
For te[a,b], Wu,1) is analytic in the complement of ly. For every sufficiently
small ¢ > 0 there exist constants Hy and H such that for p¢I(0 — ¢, 0 + &) we

have
Wiu, 1) e G(| | ~*Ho, H, [a, b, BEH*P(G), H °* (G))).

Proor. Let 1 < p < 0. Suppose that k(x’, x,, &', s) has support in lx’ ] < Rand
satisfies the estimate | &' || DEDEK(x’,x,,&",5)| < (x, + 9)7" for 5>0, x,>0,
| ﬂ’] <v, and a’| < v.[8, Lem. 2] ensures the existence of a constant C =
C(p,v, R) such that the estimate

Lan S |9

Ly(RY)

'l‘(zn)'"“ f ¥ Uk(x!, x,, ', )G &', )dE", ds [

holds for every g e C3(R") with support in the interior of R%. This result and
estimate (4.11) with s =0, I =0, p=0, [¢/|<5, |6'|Sv+i, mZk, and
i + k £ w imply that (i) is true.

Let fe C3(G). Then using local coordinates as in (4.3) we find that

Df4,0f(x)
4.12)

= (2m) T (x) f e E O, Nsd(t, X', %, 'y 5, D5~ S (E', $)dE ds.
Estimate (4.11) with [ = 1, |6'| <, |¢’| £ v, m = p = 0 and [8, Lem. 2] (that

we have cited above) ensure that for every fe C;°(G) and for n = 0,1.-- there
exists a constant C, ,, such that for te[a, b] we have

i N
a7 Dils t)fu < Cn f)(L+ |21+~
Consequently
i 1 At "
lim - ] €5 Dih 0dlf
exists for fe Cg(G).

Suppose that k(x',x,,&’,s,r) vanishes for |x'| <R and that there exists a
constant ¢ such that | DEDE, k(x',x,,&',s,7)| £

exp (— c(x,+ (&' [+ |E|+n (& [+ 1707 for |a'| S v and [f'] v
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and with @ 2 1. [8, Lem. 3] ensures the existence of a constant C = C(p, c, R, v)
such that for g € Cy(R”) with support in interior of R} we have

Jams [ews ([ thtrtm, i), e ds]

1
=C|g ”me:)-
Fort>0andn=0,1, - set

1 1 O"
Pll.j(t’ T) - 77;1._ J.loe WDJ(A, t)dj..
Estimate (4.11) with |¢'| < v, |§'| < v, m =1 = p = 0, and [8, Lem. 3] (that we
have cited above) ensure the existence of constants Hy and H such that for

te[a,b],t>0,and n = 0,1, -, we have

(4.13)

P, (t,0)| £ HoH"M,

Since, as we have checked above, lim,, P, (t,7)f exists for every fe CJ(G)

we conclude, using (4.13). that lim, P, (t,7)f exists for every fe H®?(G).

It also follows from (4.13) that there exist constants H, and H such that
P(1)e G(Ho, H, [a, b], BH**(G), H*¥(G)).

Part (iii) is proved similarly.
An immediate consequence of Lemmas 4.1 and 4.3 and of the relation (4.1) is
the following lemma.
LeMMA 4.4. Suppose that the assumptions of Lemma 4.2 are satisfied for
0=a,i=12,withn|2<a, <a, <3r/2.
(i) There exist constants Hy and H such that for i = 1,2 and A€, we have

Po(4, t)e G(H,, H, [a, b], BH"?(G), H*?(G)))
and

| 2|P(4, £y € G(H,, H, [a, b], B(H**(G), H*(G)).

(i) im0 1/Q270) [ e an e*Po(L, )dAf exists for every fe H*?(G). For fe
H%?(G) set
B)f = lim —— Po(A, DA,

=0 27 y(a1,a2)

There exist constants Hy and H such that
B(t)e G(Ho, H,[a, b], BH"*(G), H**(G))).
(iii) For péy(oy, o) let
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R(u,1) = —2-71; f Po(A, (5 — 2)~1dA.

(a21,a2)

For tela,b], R(u,t) is analytic in the complement of y(xy,®,). For every suf-
ficiently small ¢ > 0 there exist constants H, and H such that for '

pel(ay ~& 0 +8) Uplay —¢ o +¢)
we have R(, 1) € G(|u|~*Ho, H, [, b], BH*?(G), H*"(G))).
LEMMA 4.5. Let the assumptions of Lemma 4.2 be satisfied.

(i) For Ael, and tela,b] let W(A,1) be the bounded operator in H*?(G)
such that for fe CJ(G), W(,0)f = (A — A()Py(2, 1) — D f. There exist constants
H, and H such that for Ael, we have

(1 +|A]'")WQ, 1) e G(Ho, H,[a.b], BH""(G), H*"(G))).

(ii) For Aely, te[a,b], andj = 1,---, 30l let Gi(2,1) be the bounded operator
from H®?(G) to H®™“**(G) such that for fe C5(G), G4, 1)f = B{t)Po(4, ) f.
There exist constants Hy and H such that for A€l, we have

G (A, 0)e G(Ho, H,[a, b], B(H*?(G), H*~*"*(G)))
and
|A]' =412 G (A1) € G(H o, H, [a, b], BH*?(G), H*(G))).

The proof of this lemma is similar to the proofs of [7, Lem. 4, 5, and 6].

The following results are proved in Tanabe [9]. Let the assumptions of Lemma
4.2 be satisfied for 0 such that o, < 6 £ o,. There exists a constant R such that
A€ p(A5() for AeT(xy,a;) with |A| 2 R and for te[a,b],

(A — A5(1) ™ e C*([a, b], BHH**(G), H*"*(G)))
for AeT(a,a,;) with [/II 2 R and there exist constants Hy and H such that for
te[a,b], AeT(ay, ;) with |A|Z R and n = 0,1+ we have

4.14) _2:7 (A~ Ae)~!

+[4] 'l—g;(x 0) “0 < H,H'M,

These results are proved in [9] for [ = 1 and the same proof applies also to
systems.

LEMMA 4.6. Let the assumptions of Lemma 4.2 be satisfied. There exist
constants Hy, H, and R such that for te[a,b], A€ l, with |,1| = Randn =90,1--
we have A€ p(A4(1)) and
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| (= 450~ Pl )]

4.15) + (4] U-g%(z — A%(0)"! = Po(4, 1) Ho

S HH'™M,(1 + A7}

ProoF. Choose R so that e p(A§(#)) provided that te[a,b], A€l and [/1]
= R. For ¢, A as above, set u(t,4) = (A — Ag(t))~* — Py(4,1))f. Then

(4.16) (A= AOW(t,A) = W(t,A)f
and for j = 1,---, 3wl
4.17) Bj(u(t,A) = G{t,A)f on 0G

where W(t,2) and Gi(t,4), j = 1,---,3wl, are defined as in Lemma 4.5. Using
Lemmas 4.4 and 4.5 and the above-mentioned results of Tanabe we find that

o LS AN o
(4.18) (A-A(:))Wu(t, )= - Eo ( i)A ‘(t)aTu(t, A+ WW(t, Y

and on 6G

n 1

(4.19) Bj(t)gt;u(t 1) = ( )B" (0 a,u(t ;)+ Gt 1)f.

i=0
Here A*(f) denotes the differential system obtained from A(t, x, D) by differentiating
each of the coefficients of A(t,x, D), with respect to t, k times; Bf(t) is defined
similarly.

Observe that there exist constants C and R such that

420 [olo+]2[olo=cdslo+ E Nasllo-a, + 12177 g o)

provided that te[a,b], ve H*?(G), (A(f) — A = f, g;eH""*"*(G) for
j=1,-,3wl, B(ty=g; on dG for j =1,---,4wl, A€y, and [l[ = R (see [9]). The
assumptions of the present lemma, Lemma 4.5 and the a priori estimate (4.20)
guarantee the existence of constants By, and B such that for n = 1,2,:-- and
te[a,b]
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ua u(t,) | Rt

,a,u(m)“

420 5 T (7)BB M, | D |+ BB+ |21 s

ai
W u(t: 2’)

+ X AP E (7)a v,

i=0 ¥}

Estimate (4.21) and the estimate " f “,,, S Cll S Il”’/ ‘”H f “1 @11 that holds for every
feH®?(G)and j=1, ---, 4wl with an appropriate constant C, guarantee the existence
of constants B, and B such that for n = 1,2, --- and te[a, b] we have

“ u(t, /1)“ +“”a~ u(t, Do

422 = “;20 (';)BOB"'*M,,_,(ll—a—;,— !m+],l| “gt—, u(z,z)uo)

+ BoB"M,(1+ AV fo-

The relations (4.16) and (4.17), Lemma 4.5, and the a priori estimate (4.20)
ensure the existence of a constant Hy > 2B, such that .

(4.23) fu(t, D) || + 2] | 4t ) o < HoMo(L + [A]") ™[ £o-

Estimates (4.23) and (4.22), the assumptions on {M,}, and an induction on n
guarantee that the estimate

(4.24) “%— |+ 1]

holds for n = 0, 1, .- provided that H > max (2B, 4d,B,B).

Let 0 £ 0, < 0, < 2= and suppose that 8, — 8, < n. Assume that A(¢, x, D) and
B(t,x,D), j = 1,--,40l, satisfy Agmon’s conditions on the ray I, fori =1,2.
Suppose that for i = 1,2, Iy, = p(A5(1)). The results of [3] ensure the existence of
a bounded projection E(t,0,,0,)in H 9?(G) that satisfies the following require-
ments: for fe D(A(1)) we have E,(t,0,,0,)fe D(A5(f)) and Ag(t)E,(1,8,,0,)f
= E,(1,0,,0,)45(1)f. Also a(A%(NE,(t,0,,0,)) — {0} = o(45(t)) NT(0,,6,) and
there exists a constant c¢(f) such that for 1¢ I'(6,,8,) we have

7‘;—,, u(r,x)ﬂo < HoH'M,(L + |A]Y)7*] fllo

[ (4~ ABDE,(1,6,,0:)7" | < e(t) | 2]~

We remark that arguments similar ;to those used in the proof of part (i) of
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Lemma 4.7 below may be used to extend the above-mentioned result to the case
0, — 0, > n. Note that in case 7/2 < 0, < 6, < 37 /2 we have

(4.25) E/(1,0:,0,)f = lim X (A — A5() " dif

=0 Jy(81.,02)
for every fe H*(G). (See [3].)

LEeMMA 4.7. Let n[2 <0, <0, <3n[2. Suppose that the assumptions of
Lemma 4.2 are satisfied for 0 = 0;, i = 1,2. Assume that for te[a,b] and
i=1,2, 1, cp(A)t). For tefa,b] set E(t) = E/t,6,,6,).

(i) There exist constants Hy and H such that
E,(1)e G(Ho, H, [a, b], B(H*"(G), H*(G))).

(ii) There exists a complex yy such that conditions (1), (ii), and (iii)’ of Section 3
are satisfied by L(t) = A}(t) + yol.

PRrROOF. Part (i) is an immediatc consequence of (4.25), of Lemma 4.4 (ii), and
of Lemma 4.6,

It follows from the assumptions of the present lemma that there exists a 6 > 0
such that for te[a,b] we have I'(8, — 4, 0,) UT(8,,0, + 5) < p(AL(t)). Let

pel(0, — 4, 0,) U I(8,,0, + 5) — v(0,,0,).
Then
(1~ AFELD) ™! = (u— AKD)TE() + u~ ' ~ E1)).
The resolvent equation,
(4~ A5 A~ ABO) 7 = (= H7H(A— ARO) ' = (u— 4507
combined with (4.25) implies that

(= ABO)EWD = e | (= A50) - D
Consequently for peI'(6; — 6,6,) U I'(8,.0, + d) — y(8,,0,) we have
(4.26) (1~ ADEW) ™ = 5 oo B O =D U0,

The right-hand side of (4.26) is analytic in the complement of y(8,, #,) and since
o(ARNE, () < I'(8,,0,), the relation (4.26) holds for u¢I'(6,,0,). The validity
of (4.26) for p¢I'(6,,6,), Lemma 4.4 (iii), Lemma 4.6, and (i) of the present
lemma ensure that for every sufficiently small ¢ > 0 there exist constants H, and
H such that for u¢I'(0, — ¢, 8, + ¢) we have
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(1 — AKOE 1)~ € G(|u|™"(Ho, H,[a, b], BH"*(G), H* "(G))))
and consequently the assertion of part (ii) is true.

THEOREM 4.8. Let {M,} be a sequence of positive constants that satisfy the
requirements (2.1) through (2.4). Denote by a(t,x) any of the coefficients of
A(t,x, D) or of Bft,x,D), j = 1,--,3wl. Assume that a(t,x) is ininitely dif-
ferentiable in [a,b] x G and that for every multi-index o there exist constants
H, and H such that for n = 0,1--- and (t,x)e[a,b] x G we have

> 0
- < n
7 s, a(t,x)| S H,H'M,,.

Assume that for te[a,b], A(t,x,D)and B(t,x,D), j = 1, -+, 3wl, satisfy Agmon’s
conditions on the rays l, and 1_,,. Suppose that f(t)e G(F,,F, [a,b]). Let
u(t)e C[a, b] N C'(a,b). Suppose that for te(a,b) we have u(t) e D(A4(1)) and

du

4.27) T AZ(Du() = ().

Then u(t) e C®(a, b) and there exist constantsC and B such that for n = 1,2, ...
and te(a, b) we have

|- 0] < B0 - o Ean@] + 6 - o

(4.28) : ‘

+o(t—a) "t B — i max [u(t)| + Fo) )
te[a.b]

E;(b)u(b) |

E,(a) and E,(b) are bounded projections in H*?(G) such that A%(a)E (a) and
— AR(b)E,(b) are infnitesimal generators of analytic semigroups.

Proor. To prove Theorem 4.8 it is sufficient to verify that for every ¢, € [a, b]
there exists an r > 0 such that A}(¢) satisfies the requirements of Theorem 3.6 in
the interval [a,b] N {t;[t—1t,|<r}. Let tye[a,b] and suppose that

0 e p(Aj(to)).
The assumptions of the present theorem guarantee the existence of a 4 >0 such
that for te[a,b] and Oe[— 3n — &, — dn + 6} U [3n — 6, 4n + 6], A(t,x, D) and
Bjt,x,D) j = 1, ---wl, satisfy Agmon’s conditions on l,. Choose R so that for
te[a,b] and 1ed(m—48,3n +8)U(dn—6,4n +08) with |[2|2 R we have
A€ p(AR(ty)) and estimate (4.14) holds. Noting the discreteness of the spectrum of

A%(1,), choose 3 so that in addition to the above-mentioned assumptions the rays
l—3n -6, 1—4n+4, 4nl -4, and inl + 6 belong to p(Ag(ty)). Let d be the
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boundary of {4;]|A| SR, Ael(~4n—6, —4n+8) UT{dn — &, 3n + 8)}. The
relation 0 = p(A§(t,)), the compactness of @ and the validity of (4.14) for some 1
ensure the existence of positive constants r, Hy and H such that for t € [a, b] with
|t — 15| < rand A€ we have de p(A](1)) and

4.29) |5~ 4300 | s Hotm,,
Set [, 8] = [a,b] N{t; |t — to| < r} and for t & [«, B] let

B0 =5 [ - a0

It follows from estimate (4.29) that there exist constants H, and H such that
E(f) e G(H,, H, [, 81, BH*"(G), H**(G)))

and
ANDE(1) € G(H,, H, [«, B], BLH®(G), H**(G))).

For te[a,f], let E(f) = E(t,3n + 6, 3n/2~3) + EXt) and set E,(1) =
E/(t, — n + d,3n — 0). The results of [3] guarantee that for te[q«, B], A5() is
completely reduced by the direct sum decomposition

2
HY"(G) = ¥ @ E()H**(G).
i=1

Consequently Lemma 4.7 and the above-mentioned properties of Eg(t) and
A,’,(t)Eg(t) guarantee that Aj(?) satisfies the assumptions of Theorem 3.6 in [, B].
In case toe[a,b] and 0¢ p(45(ty)), a result of the same type is obtained by
considering the family Aj(z) — Aol where 1, € p(A45(,)).

Note that Theorem 4.8 extends the results of [9] where it is assumed that for
each te[a, b], A§() is the infinitesimal generator of an analytic semigroup. In this
case there exist constants Ho, H, G, and G such that for n > 1 and t € (a, b] we have

| 4"

430 |27 w0l < HHM, - )| u(@)] + GoGM,(t — i)+,

See [9].

We state without proof the Theorem 4.9 that can be proved with the help of
Theorem 3.3. by a method similar to that used in Theorem 4.8.

THEOREM 4.9. Assume that the coefficients of A(t,x,D) and B(t, x, D),
j=1,-,30l, are infinitely differentiable in [a,b] x G. Suppose that for
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tefa,b), A(t,x,D) and B{t,x,D), j = 1,---,30l, satisfy Agmon’s conditions on
the rays Iy, and |_,.. Let u(t)e C[a,b] N C'(a,b), and suppose that for te(a, b),
u(t) € D(AK(Y)) and du|dt — A(Hu(t) = f(t). Then u(t) e C*(a,b) and for every
positive integer n there exists a constant C, such that for te(a,b)yandn = 1,2, ---
we have

“ Zt “(OH < Gt — a)"| Ey(@u(@) | + (0 — 1"

E,(b)u(b) |
(4.31)

k
+ (t _ a)—n+l(b _ t)—n+1( max] " u(t) ” + klzloax “%{k‘f(t)“)

te[a,
tefa,b]

E,(a) and E,(b) are bounded projections in H*?(G) such that A%(a)E,(a) and
— AY(b)E(b) are infinitesimal generators of analytic semigroups.

Note that for p = 2, or for 1 <p < o and A§(t) independent of ¢, the as-
sumptions of Theorem 4.9 and the results of [10] and [2] respectively guarantee
that u(f)e C*(a, b).
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